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STAT

BASIC_HYDRODYNAMIC EOUATIONS FOR TURBULFNT JOTION AND

THEIR APPLICATION 10 MC'TTION IN KOUND PIFES

Stjepan Mohorovicic

(Zagreb, Yugoslavia).

Zﬁote: The following is an article that appeared in the journal Zeit-
schrift fur technische Physik, pages 68-7) (1925).7
Contents:
Introduction: New Basic Equations:for Turbulent Motion
I. Application to Turbulent Ilow in Found sipes in the Case Where the
Averae Velocities are Stationary,

II. The lonstationary State, a Special Case.

It is well known that present~day hydrodynamics with the aid of Eulerian
and Navier-Stokes theory govern only "laminap" motions. As soon as, however,
the velocity exceeds in actuality a limiting value, an entirely irregular turbu-
lent motion immediately ensues. It is assumed, nevertheless, thst the basic
hydrodynamic eguations do not lose their validity in also this case, although
tr.e theory here is undoubtedly in need of broadening. Previously several attempts
were made along these lines to expand the theory, and the most noteworthy attempts
have been performed recently by J. Boussinesq 2) and O, Reynolds 3).

Several yesrs ago I L) had made an attempt, during an investigstion of the
structure of wind - which is reported in more detail in another place~, to treat
turbulent flow theoretically, and during it I had obtained rather good agreement
with the results of my experimental measurements, It is my intention to include
here generally my expansion of the theory, and to apply it to turbulent flow in

round pipes,

[
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Let us proceed from the familiar equations for an incompressible fluid:
D.“ =o(X+&) — “—f: STAVL (1)
ek =p (YYD -’ A
L(’U{- <'Z' 5>*f):’ - £V

2U )/ ; ery o
AL - 1
Ix ‘;r‘ 7z ( 2)
where we have introduced in addition the intemsl forces 3‘6 ,Sg:) ,Wg which

act to retard the turbulent motion because of the large energy losses; epsilon ¢

5)

is the "virtuel" internal friction or turbulence . Jince the fluid motion

6)

is composed of two parts, we shall divide according to Tieynolds the velocities

into two components:

u G+

[

VARVE (2)
Low =0 = '

<
I

where we disignate by j, Vv, W the average (mean) velocities and by y', v',
w! the components of turbulence (pulsation). Further we shall assume that a
part of the velocity drop causes the turbulent motions, irrespective of whether
primary or secondary; that is, a part of tue veloclty drop c{:auses the average
flow and the other part causes the turbulence. If %1 and 5;, mean the corre-

sponding fractions of the velocity drop, we must have

G, +9, =1 (1=1, 2, 3) (3)
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the basic equations (1 2) then break up into the two systen
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Now we must first solve the first system (hl, 2) and set the values found for
%, V, W into the second system (Sl); only then can we calculate the turbulence
velocities g4', v', w', which in many cases will be superfluous. The very
compliceted system (51’ 2) makes us suspect that {hévpulsatiéns (turbulence)
will be of a very complicated nature, which observation also has confirmed,

I, The utility of tie expansion developed here of the theory I have already
indicated earlier in the investigation of the structure of wind (see footnote L);
I will now apply this theory to the case of turbulent flow in around pipes., In
this case we shall first assume thal the average velocities W are stationary;
the ze~axis coincides with the cylinder's axis; and the average velocities W are
distributed around the cylinder's axis symnetrically - that is, the average
velocity W is only a function of the distance r from the z-axis, Since g = ¥ = 2y
W /Bt =0, /32=0,X=Y=2=0 (that is, we shall also be able to
neglect gravity in the case where the pipe is in a horizontal position), we obtain

from (hl) the familar basic relation:

s (rZ2y =27 4

! J—
Forsar/ g2 Uz . (6)
Nbviously we must make assumptions for 33 such that they not only lead us to
correct results but also correspond to the nature of our protlem,
First let us set:
'9'3 = A(b + ar?), (7)

where &, b, a also can be functions of the pipe's radius.,

-l -
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In order to solve our basic eguation (6), let us set:
w = KOGO + B, (8)
where Ko and B too are constants to be determined, and 50 should be a function
of re From (8) and (6) we obtain:
n 1
e + 0. /r =Ke_/K
e 5%y (9)
where we have set
K=op/ g oz (10)
In order to be able to solve the differential equation (9) with regard to (7), we
set:
o, = cehar™*? s+ o (11)
and finally obtain from it
C = KAb/LK (12)
< .
= - s 12
m 2 :L < Ko ( 2)
In the case where m is any real number, then we shall have for
2
K= m Ko
at once n = =2 +m (13)
or ne=2-=-m : ()
and we see immediately that the negative values of n do not correspond to
our problem. Therefore it follows that:
-~ KAa nm  KAb o
W= r' b e+ B (m> 2), 15
i

D
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Since at the wall of the pipe (r = R) no slip occurs, that is since we must

have W = 0 there, we finally get:

- i%% [z (@ - ™ +¥§- (FF - 12)7 (n2) (15)

For the totsl flow through a cross-section in 1 second we get:

3 =4 0 _m &t gm+* 2 b

R SR #7 (n32), (16)
- -, 2

and we form the average velocity: ¢ = - G/R n; arn)

thus we ontain for the velocity distributioh in the cross-section the

H (R ) 5 (R

expression:

iy 4
¢ T m A . h oz
2 e R+ 5 R (18)

It will now be interesting to consider some special cases:
1, For A=Db =1 and a = 0, our relations (15a) Lo (18) reduce to the

familiar Peiseuille Law for laminar [low:

el O 22
w - ).!p ai (R - ) (191)
il o
R (& = (29,)
N Ly (19.)
c 78 3

Therefore it follows that laminar flow represents an entirely special
case of natural flow. As is well known, this law loses its validity at once
if the flow becomes turbulent. It fhdlows from (193) that for r = 0 we get

immediately:

W, " 2 (19,)
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e

on the other hend, measurements of turbulent flows yield 8):
W, = 116 up to 1,23¢ (20)

2, Tor b =0 and A+a = ao, we have already a kind of turbulent flow; the

relations (1%a) to (18) reduce to:

4 7
— (] .
AN) T e e T‘f = ! l,__ o
hzzf_, a3 (7\ " > (21‘1)
— e & )Tr -
T e Oe | ' (a,)
2
/(Z . vy I?" - | i~ w1 > ‘}{
= T ' —Tn
¢ 53 (21.)
3
In this case we should not forget - as we have already emphasized this - that
ao also could be a function of R; that is,
a =a/R". (22)
From (213) it follows for r = O immediately that
- m+ 2 o —
w° = c (m = 2) (Elh)

and in this case m is always to be chosen so that (21h) agrees with (20);
however, we must not forget that the redation (21i) also must agree with the
results of measurements. Let us make the following table therefore, where
we shall consider only some integral values of m:
m 2 3 L - 5 6 7 8 9 10
(@+2)/m: 2 1,667 1.5 14 1,333  1.286 1.25 1.222 1.2

-7 -
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i n : 11 12 13 100 5000 ®

(m+ 2)/m: 1,182 1.167 1.154 1.02 1.000 1
| -

Only for the case m = 2 is it valid for laminar flow, since then we have
n=m=~2 = 0; all other cases m » 2 represent turbulent flows for us. In
Figure 1 the new laws for various values of m are represented graphically,

We will now assign these values numerically:
w/c

r/R m=2 m=3 m=6 m=12 a=l00 n=owo

| 0.000 | 2,000 1.667 1.333 1.167 1.020 1.000
0.125 | 1.969 1.664 1.333 1.167 1,020 1.000
- : 0,250 | 1.875 1.641 1:333 1.167 1.020 1.000

§ 04375 | 1.789 1.610 1.331 1,167 1.020 1,000

? 0,500 | 1.500 1.459 1.312 1.167 1,020 1.000

} 0,625 | 1.219  1.260 1.25% 1.163 1.020  1.000
0,750 ¢ 0.875 0,964 1.096 1.130 1.020 1.000
0.875 1 0.169 0.550 0,735 0.921 1,020 1.000
0,937 | 0.24  0.296 0.431 0,633 1.018 1,000
0,999 { 0.00 0,005 0,008 0.0l 0,096 1.000
| 1,000 | 0,000 0,000 0,000 0.000 0.000 0.000

Immediately apparent from the figure is the familar fact that during tur-

3 sulent flow the velocity is distributed °)

much more uniformly over the cross=
section than during laminar flow, In this case, however, we have not obtained
complete sgreement with the measurements, especially not in the immediate

neighborhood of the pipe's wall.

-8 -
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! 3, The most general case: Here we have four quantities A, a, b, m at

our disposal, so that we can fit very exactly the theory to observations. In

order to show this, we shall now compute an example. First we must determine
the number m, and indeed from the relation (18) we set r = R and
b = gaj (23)

it follows immediately that:

e L "

1
i
i
=2 N - L ——
| R™™*. Ttwmrzy ML
. 4 == e pe———— (2k)
' 0 | vl
| —_——— el
e “+ g
|
; In this way we can eliminate in (18) the unlcnown quanti‘oy a and finally
/
, v
l obtain: T i’ 5 T rl*’w
i — = | T | e [ ’7’
l A = R7 |—3 % K
; z e (25)
! - AL NA . & '
m -2 Voo
; 2(1—5 = )
! “- T
| This formula is very convenient for pmactical computation. For a care-

10) %/ 1061

fully smoothed cement pive of K = O em radius, Bazin has found
and in the "immediate neighborhood" of the pipe's wall W / T = 0.741. Since,
according to the investigations of Forchheimer 11), a value r ® 39,96 cm lies
closer for the last-named case, it follows that we have for m a value between
2000 and 3000. It is very interesting here that the number m is not too very
gengitive!; this number, however, cannot exceed in our case the value 5000.

We shall now compare the results of Bazin's measurements with the results of

i
H
|
\ our theory:
l
|

IWCTED
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m = 2200 m = 3000
r/R W/%T (obs,) W /¢ (cale.) Ww/3 (calc.)

0.000 1.167 1,167 1,167
0,125 1,160 1.162 1.162
0.250 L.147 1,146 1.146
0.375 1.126 1.120 1.120
0,500 1.092 1.084 1.08,
0.625 1.047 1,037 1.037
0.750 1.001 0.980 0.980
0.875 0.922 0,912 0.912
0.937 0.846 0.875 0.875
0.999 0,741 0,741 0.792
1.000 0.000 0.000 0,000

12)

The agreement is really an excellent one I In the case of the value
measured by Bazin 0, 741 is valid for still larger neighborhoods than 0.0} cm
at the pipe's wall; thus we shall keep the value m = 3000, In this case we
must keep in mind that we have maintained here at all times the "virtualn
internal friction or "turbulence" g constant throughout; nevertheless our
theory governs perfectly the turbulent flow considered,

Alter we heve determined the number m, we can determine also g by means

of relation (24), and the formula (16) will assume the following form:

( v/G )
Q Aa__)g T T A m+ty " m/ m’— M (26)
0 2. mr 2 1 We
(3 22 (,_ s N
- 10 -
313‘?1'"”{4
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vhere we must still insert:

A= 1, (271)

a>€/Rﬁ a = L(/R‘ﬁ Ejm:\\ \“‘<“:‘ (272)

Now it is always possible, on the basis of measurements, to determine the
constants K and @ . Moreover it is completely sufficient if we determine
only the ratio X/¢ , since only 53/5 appears throughout at all times lh).
Our problem is therefore completely solved for the case where the average
velocities are stationary 15).

Now let us return to the formulas (23) and (2)) and let us ask ourselves
in which case we shall have: b = O, This will be possible only if in (24) the
numerator is equal to zero; that is, we then obtain the condition (th) already
known.

II. We shall now let the condition fall, namely that the average velocities

are stationary; that is, we shall consider the more general case where we have:

ow / dt== 0. Our basic equations (hl 2) will be reduced to:
t

9 -gzi __ 022p_ 00D
ax=oyr T € Jz % Ot (30)

or, for the sake of axial symmetry:

2 975)—(532,2_,8_ ?-?P)r«

gr\or) =G % 75 Ot (30a)
Let us sct similarly as before:
@3':‘: A+(b+ar™™) 4+ (51, (31)

11 -
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where A is a function of time; we then obtain:

9, A 9 - ,__LDP,, 4 ___S)?-:QJ
L5 2B B (byarm ) + s REEO-T 5L (5

Obviously it would not be easy to solve generally this differential equation;
let us therefore consider an especially simple case where the following

expression holds:

T Op 9t
D) = (oJ) A
the eouation (32) reduces then to the eauation already known to us:
2 _)[u‘\ . A P L . me2y
%(?5}j_/.m.'z-‘i—';£\bwﬁr“ )r 5 ()

this equation we have already solved earlier according to the methods (15), or
(15a). Let us go still a step further: Let us designate by ,ﬁ'ﬂ the length

of the pipe and by TT

Fep, o, (35)
the difference in pressure at the front and end of the cylinder, and if we
set _ ; Q/L

Ar o Ty ko R ()

where Q) means the flow, not per second, but in the time t, then we obtain from

(16), by multiplying the right side by t, the following expression:

TT = :/5_1‘_ L (37)

-12 -
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We must now still determine the function A of t on the basis of measuvrements.
The measurement of O. Reynolds, Couette and E. Pase and co-workers yield for

turbulent flows the following law:
— | \) S
}—T e A.T' ('i‘/ (38)

)

- 6 -
where Ag is a constant and s equals 1.6 ~ 1,95 1 o Since in our law (36) AT

also is a constant, then we have

A=t (39)

and therefore we have "deduced" the empirical law (38) also toeoretically 17).
We see, however, that the empirical law (38) is orly an entirely special case
of our theory; or law (37) is of a much more general nature. It must be still
emphasized expressly that the formulas (15a) to (18) have also here their
validity; only, the auantity A is now a function of the time t. The relation
(18) is now independent of the time t.

Since the quantity TXT is experimentally determinable, we can use its value
in order to determine more closely the quentity a from (36). Thus, for example,
von Karman 18) has shown that F.T is also a function of the thickness 3
accordingly it results from (36) that the quantity a can likewise Le a function
of @, In other words, it is possible to determine entirely Eee I, (272)
herg7 the quantities a and b = ga on the basis of measurements. Further we

have found that

= o+ -2 + H rap oy; H
53 Alb + ar™*%) (p. "J'z") 5 (Lo)

since '9'3 is a function of the average velocity W, we understand why turbulence

must eppear if the average velocity W exceeds a certain limit, TFurther invest-

“13 -
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igations I have réserved for a liter larger publication; I wanted here to
indicate only the range and importance of my expansion of the theory, of which
I hope that it can perform more than the ingenious theory of Boussinesq, since
it can yield us by means of equations (51,2) also the information on pulsa-
tions 19)..

In conclusion I note that I had found casuse to expand my theory published
in the year 1920, because I was invited by the Committee in the Section for
Hydro- and Aerodynamics of the International Congress for Applied Mechanics
at, Deft (Holland) to give a reporl on my investigations on the turbulence of
winds 20). Further investigations will yet show how far the method started

here will prove useful.
Conclusion

First, new basic equations are presented for the turbulent motion of a
£luid with internal friction, After the author has shown elready earlier such
an expansion of the theory in his investigation of the structure of winds, he
considers here turbulent flow in round pipes. In this case it is shown that @
one can bring the theory into almost complete agreement with observations.,

The theory also offers transitional flows between the laminar and turbulent
state,
(Submitted 15 July 192L)

Notes |

1) see, for example, Ph. Forchheiwer, Hydraulik. Leipzig and Kerlin: 191,

page 26. R. von Mises, Elements of Engineering Hydromechanics. Part I.

Leipzig and Berlin: 191k, pages 34=5. Cl. Schzefer, gntroduction to Theoretical
Physics. Volume I, 2. A. Berlin and Leipzig: 1922, pages 909=911.
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2) See, for example, J. Boussinesq, Theory of the Turbulent and Tumltuous

Flow of Fluids, Paris: 1897. See also Ph. Forchheimer, loco citsto,
pages 26 et seq., 11l et seqs

- 3) See, for example, H. Lamb, Textbook of Hydrodynamics (German translation

by J. Friedel). Leipzig and Berlin: 1907, pages 735 et seq. (especially
pages TL3 et seq.).

L) S. Mohorovi¥id, Investigations of the Wind in Redziechow, in Galicia.

(Part I: Measurements, Part II: Manipulation of the Measurements and
Theoretical Consideraticns on the Structure of Winds with Special Reference
to Turbulence). Compare the results with the measurements. Bulletin de
1liAcademie des sciences et des Arts de Slaves du Sud de Zagreb (Croatie)
Volume 13-1Li: pages 85-125; Zagreb: 1920, (see also the author's abstract

in the Physikalische Berichte /Physicsl Reports/, II, 183, 1921).

5) See, for example, F. M. Exner, Dynamic Meteorology. Leipzig and Berlin:

1917, pages 107. Also see Ph. Forchheimer, loco citato, page 27,

7) S. Mohorovikié, loco citato, page 113.

6) See, for example, H. Lamb, loco citato, page g nn

8) See R, von Mises, loco citezto, page 66, ‘
9) See, for example, R von Mises, loco citato, page 66. Also see Fh, |

Forchheimer, loco citato, page 11l
10) See, for example, R. Von Mises, loco citato, pages 66-67. In this series
of tests the average mean-speed T was about 110 ~ 150 cm/sec. :
11) Loco citsto, page 120, !
12) I must note here that an entirely different solution of this problem was
f given by Th., von Karman ("On Laminar and Turbulent Friction", Zeitschrift !

fur Applied Matematik wnd Mechanik I (1921), 233.) Also see Abhandlungen

aus dem aerodynamischen Institut an der technischen lochschule Aachen,

Lif. 1; Aachen: 1921,
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— k N
13) It is namely: O ¢ == —=un. (9+r""%) | 28
3 Ivis nenays  Bfe = o (g ) (28)
1) Here we keep & constant for the following reason: the measurements
of Ludwig Schiller ("Roughness and Critical Numbers: An experimental

Report on the Preblem of Turbulence". Zeitschrift fur Fhysik 3 (1920),

L12) have shown that the roughness ol the pipe's wall is not a necessary
condition for the genesis of turbulence, but if turbulence arises in one
place theh it will continue with the flow.

We could heve also inserted the series:

=]
.
~

- 2 n ‘
8 =b+ar+ azr e tar, (29)

and then solved the problem; however, this womld have been an unnecessary
complication here. FPerhaps such cases also are possible where we must
employ the more exact form (29) for 53.
16) Cl. Scheeffer, loco citato, page 906, Fose found s = 1.620 (see page 911).
On this occasion I must call attention to the extremely valuable investigation

of von Karman, Physikalische Zeitschrift 12 (1911), 283,

17) Cl. Schaefer says in his familiar textbook, locc citato, page 911, "On
the other hand the efforts of the most prominent theoretician (Reynolds, E
Lorentz, Sommerfeld, Hamel, Boussinesq) have not succeeded up to now in
delivering a satisfactory theory of turbulent flow, whose problem it should
be above &) things to derive on the basis of a clear knowledge of the
actual flow process the experimentally found equation of turbulence (129)

[Tn our case, equation (38) herg7. We must consider as one of the most |
importart &ims of hydrodynamics the solution of this problem",

18) Loco citeto, page 28L., See also Cl, Schaefer, loco citato, paged $10-911,

- 16 =
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19) I have not accomplished this here, since the paths of individual fluid
particles do not interest us here (only being preliminary). It is Just
this, however, that is the most important problem in aerodynamics,
Turbulcnt wind flows play an enormous role in aeromautics, And it was
Just this fact that gave me the first impulse, on the one hand, to attack
this problem and especially to treat pulsations theoretically (see my
work cited above).

20) Professor J. M, Burgers (D%%t, Holland) has compiled an abstract of this
work for the proceedings of the Congress, for which I express to him my

deepest gratitude. b w/E

-k (Iami nar)
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Figure 1. Distribution law of velocities at various distarces from the axis of a
round pipe, for laminar (L) and turbulent (T) flow, (m is the "degree" of the
turbulent stats.) * E D
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